
Tower defense (OOP4Fun Book)
Tower defense (OOP4Fun Book)

The aim of the course is to learn the Light OOP concepts using the Greenfoot environment. The game Tower defense is used as a demonstration.

Planned ECTS: 2

Number of learners: 5

Mode of delivery: Face to Face

Status: IN PLANNING

Course public access: Public

Contributors:
Zlatko Stapic, Dušan Savić

Course learning outcome Level Weight

Understanding the basic principles of object-oriented programming Understanding 25

Understanding the basics of algorithmisation Understanding 25

Understanding the syntax of the Java programming language Applying 10

Analysing program execution based on the source code Analysing 20

The ability of creating own programs with the use of OOP Creating 20

Total weight: 100

Topic / Unit name Workload Learning
type

Mode of delivery Groups Collaboration Feedback Mandatory
activity

Assessment

Points Type Providers

A. Greenfoot environment
The ability of creating own programs with the use of OOP (100%)

TS A.1 Introduction to Greenfoot: Exploring Game Development with Creativity

 Introduction
Teacher introduces today's session,
reflects on the previous session and
sets challenging goals.

5 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Rush-hour challenge
After the teacher introduces today's
session, reflects on the previous
session and sets challenging goals,
the rush-hour challenge begins.
Students are given the gamified
assignment to find instructions,
download and install greenfoot (yet
unknown development tool for them)
on their computers. The first three
students are given tokens of
appreciation (badges, points, scores,
sweets etc.).

10 min Investigation Onsite Synchronous Teacher
present

No No Teacher No No

 Playing games with teacher
The second surprise for them is that
in the next 30 minutes they will be
playing games with the teacher. This
is a teacher guided session on
opening, compiling and running one-
two simple example projects (on the
introductory to medium level of
complexity). This will show students
the basic elements of the Greenfoot
development environment as well as
of basic procedures of handling the
project files and assets.

30 min Practice Onsite Synchronous Teacher
present

No No No No No

 Team Formation and Project
Assignment
The students will be grouped in the
teams (3-4 students each) and will be
given a simple assignment. Teams
should change “something” in the
given example project to make the
game surprising or fun.

5 min Acquisition Onsite Synchronous Teacher
present

Yes Yes No No No

 Team Collaboration and Coding
Team collaboration and coding will
have teams work collaboratively on
trying to change something in the
given examples. If they break the
code beyond the line of being able to
fix it on their own they can ask for
help from the teacher or can
download the “start version” again.
This will be a good example why we
should use version control systems
when coding.

30 min Practice Onsite Synchronous Teacher
present

Yes Yes No No No

 Peer Review and Feedback
One or two teams will present their
work for peer review and feedback
and the group will discuss the results
along with the teacher.

10 min Assessment Onsite Synchronous Teacher
present

Yes Yes No No 0 Formative Peer

 Homework
At home for homework, each student
should search for examples of
Greenfoot games and should
introduce his class to his favorite
example by uploading a link,
description of what makes it his
favorite example and two-three
screenshots of the development
environment and running game.

30 min Production Hybrid Asynchronous Teacher
present

No No No No No

 Competition grading
As part of the gamification and
motivation via competition, each
student should vote for three best
games (it is not allowed to vote for
his own game). The winners are
announced and awarded with tokens
of appreciation (badges, points,
scores, sweets etc.).

30 min Assessment Onsite Synchronous Teacher
present

No No No No 0 Summative Peer

Total unit workload 2.5h

1. Class definition
Understanding the basic principles of object-oriented programming (60%), Understanding the syntax of the Java programming language (20%), The ability of creating own programs with

the use of OOP (20%)

TS 1.1: Exploring Classes and Objects through Game Development with Greenfoot

 Object
 Introduce the students with the
object concept by real-life examples.

10 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Identification of objects and their
properties
Students conduct independent
research on what objects are to be
presented on the stage of the game
they are developing (Flipped
Classroom Session).

15 min Investigation Onsite Synchronous Teacher
present

No Yes Teacher No No

 Class, instance, inheritance
Teacher guided discussion on
recognized objects and their
classification in classes.

15 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Orientation in Greenfoot: World,
Actor, MyWorld
Creating an instance of the world in
Greenfoot

10 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Class constructor
The teacher presents source code
and introduce the concept
constructor.

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Task 1.2
Prepare world

15 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Image settings
How to choose, create, import, paste
an image

10 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Task 1.3
Prepare world graphics

15 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

Total unit workload 1.66h

TS 1.2. Creating Classes and Objects through Game Development with Greenfoot

 Basic concepts
Subclass, object identity, internal
state

25 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Task 1.4
Create class Enemy

10 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 1.5
Create instance of class Enemy

30 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Interface of object 5 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Message and method 15 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Task 1.6
Send messages to instance

30 min Acquisition Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Theory revision
Theory revision of the object, class,
instance, internal state, identity,
message, method

15 min Acquisition Onsite Synchronous Teacher
present

No Yes No No No

Total unit workload 2.16h

2. Algorithm
Understanding the basics of algorithmisation (60%), Understanding the syntax of the Java programming language (10%), Analysing program execution based on the source code (20%),

The ability of creating own programs with the use of OOP (10%)

TS 2.1. Introduction to Algorithms and Algorithmic Thinking

 Introduction to basic algorithms as a
sequence of steps
A sequence of steps

15 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Task 2.1
Write a simple algorithm

20 min Investigation Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

 Algorithm and its properties
Algorithm and its properties

15 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Task 2.2
Write a more general algorithm

25 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

 Algorithmisation
Algorithmisation

15 min Acquisition Onsite Synchronous Teacher
present

No No No No No

Total unit workload 1.5h

TS 2.2. Greenfoot Adventures: Unraveling Java Method Invocation, Documentation, and Application Control

 Explanation of act () method
Code explanation

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Explanation of move() method
Code explanation

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Introducing keyword this
Basic concepts: Keyword this

5 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Task 2.3
Call a method

10 min Production Onsite Synchronous Teacher
present

No No Teacher,
Peer,
Automated

No No

 Explanation of Autocompleting
Code explanation: Autocompleting

5 min Investigation Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 The importance of code
documentation
Basic concepts : Documentation
comments

15 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Task 2.4
Add documentation

5 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 2.5
Add more documentation

5 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 2.6
Read the documentation

10 min Investigation Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

 Task 2.7
Explore application controls

20 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Discussion: Algorithm, properties,
algorithmisation, Greenfoot buttons
Theory revision: Algorithm,
properties, algorithmisation,
Greenfoot buttons

5 min Discussion Onsite Synchronous Teacher
present

No Yes No No No

Total unit workload 1.75h

3. Branching
Understanding the basic principles of object-oriented programming (10%), Understanding the basics of algorithmisation (60%), Understanding the syntax of the Java programming

language (10%), Analysing program execution based on the source code (10%), The ability of creating own programs with the use of OOP (10%)

TS 3.1. Exploring Branching through Game Development with Greenfoot – Incomplete code branching

 Introduction
The teacher discusses with the
students the concepts that were
covered in the previous lesson.
Teacher introduces goals for this
teaching session.

5 min Discussion Onsite Synchronous Teacher
present

No No No No No

 Code explanation
The teacher downloads the latest
version of the project:

· From Moodle platform
· Fromgit repository

The teacher creates and places an
Enemy class object somewhere on
the board. It explains some methods
of the Actor class:

· move(int)
· turn(int)
· setRotation()

While explaining the methods, the
teacher also shows how certain
properties of the class are changed
(for example, the position of the
object on the board, ie the x and y
values). The teacher discusses with
the students how to supplement the
act() method so that every time the
act() method is called, the Enemy
class object should move two steps
forward.

15 min Acquisition Onsite Synchronous Teacher
present

No No Teacher No No

 Incomplete branching
The teacher continues to work on the
project. The teacher places an Enemy
class object on the board. The
teacher explains to the students how
they can check if the object is in the
upper half of the board and displays
the message "Found".

10 min Acquisition Onsite Synchronous Teacher
present

No No Teacher No No

 Observing the players’
The teacher creates an instance of
the Enemy class and places it in the
center of the board. The teacher
opens a window with the internal
state of the instance and positions it
so that it is visible while the
application is running. Then run the
application and observe how the
values of the x,
yandrotationattributes in the
Enemyclass change when call
different methods. How do these
values change as you move (up,
down, left, and right) and turn?

10 min Investigation Onsite Synchronous Teacher
present

No No Teacher No No

 Adding world edge detection
Task 3.2: Teacher asignt task to
students to add code to the body of
the act() method to rotate the enemy
180° by calling the setRotation()
property, when it reaches the edge of
the world.

10 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

Total unit workload 0.83h

TS 3.2. Exploring Branching through Game Development with Greenfoot

 Add classes Direction and Orb
Task 3.3: Create two new classes,
descendants of the Actor class. The
first class will be Direction class and
the second class will be Orb. Prepare
suitable (max. 50x50 pixel) images in
a graphical editor. Then assign these
images to the newly created classes.

30 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Collision detection explanation
The teacher put an instance of the
Enemy class on the World, and an
instance of the Direction class in the
same row. The teacher adds code to
the act() method so that the object
moves one step forward.

The teacher explains to the students
how to determine whether two or
more objects ("characters") on the
World are in the same position (on
the same cell). The teacher explains
the method: isTouching().

The teacher and students modify the
act() method of the Enemy class to
ensure that the enemy rotates 90°
clockwise when it is in the same cell
that contains an instance of the
Direction class.

Together with the students, the
teacher observes what happens with
the rotation attribute.

30 min Investigation Onsite Synchronous Teacher
present

No No Teacher No No

 Task 3.4
Add code to the act() method of the
Enemy class to ensure that:

the player turns 90° counter
clockwise when he enters a
cell the contains an instance
of the Orb class.

10 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 3.5
Prepare different configurations,
inspiration can be found in the figures
below. Guess how the enemy will
move? Run the application. Does your
prediction match what you observe?
What caused differences in prediction
and reality?

10 min Practice Onsite Synchronous Teacher
present

No Yes Teacher,
Automated,
Peer

No No

 Task 3.6
The teacher assigns the students the
task of describing on paper how a
pedestrian crosses the street.

15 min Practice Onsite Synchronous Teacher
present

Yes Yes Teacher,
Automated,
Peer

No No

 Code explanation: Complete
branching
Complete branching

15 min Acquisition Onsite Synchronous Teacher
present

No No Teacher No No

 Task 3.7
Teacher adds assignment to students
to work on task 3.7. Teacher follows
the students activities, and in the end
he asks one student to present his
work. The student describes and
presents his work.

20 min Practice Onsite Synchronous Teacher
present

No Yes Teacher,
Automated,
Peer

No 0 Summative Teacher,
Peer

 Task 3.8
Predict enemy movement on custom
setup.
The teacher puts objects arbitrarily in
the World, and the students explain
their movement and behavior
(independently or in pairs).

30 min Investigation Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Revision
The teacher summarizes the lesson.

5 min Discussion Online Synchronous Teacher
present

No No No No No

Total unit workload 2.75h

4. Variables and expressions
Understanding the basic principles of object-oriented programming (40%), Understanding the basics of algorithmisation (30%), Understanding the syntax of the Java programming

language (20%), The ability of creating own programs with the use of OOP (10%)

TS 4.1. Introduction to Variables and Data Types in the Greenfoot Environment

 Introduction
In the introduction section context
related to the previous sessions is
established. The teacher introduces
the term variable.

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Variable identification
§ Teacher introduces the term
variable,

§ Students can be asked to research
and identify variables for their game,

§ The variables can be discussed by
the teacher and peers,

§ In this scenario, variable type can
be omitted (or discussed in general).

5 min Acquisition Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

 Data types
o Teacher introduces the term data
type,

o Examples from real-word can be
discussed (e.g., integer numbers can
be related to number of currently
present students, decimal numbers
can be related to a product price, text
type can be related to instant
messaging text, etc.),

o Data types are considered in the
context of the Greenfoot Environment
and Java programing language,

o Detailed discussion related to
variable types required for the game.

15 min Acquisition Onsite Synchronous Teacher
present

No No Teacher No No

 Declaration of variables
o Data types are considered in the
context of the Greenfoot Environment
and Java programing language,

o Teacher should explain the
difference between declaration and
initialization of variables

o Declaration of Game-required
variables.

o Additional examples can be
considered. For example, if act()
method is considered, variable for
displaying text can be declared.

10 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Initialization of variables
o Based on previously presented

data types, their data values and
data ranges are introduced,

o Data values and data ranges are
considered in the context of the
Greenfoot Environment and Java
programing language,

o Teacher should explain the
difference between declaration
and initialization of variables

o Initialization of game-required
variables.

o Additional examples can be
considered. For example, if act()
method is considered, variable
for displaying text can be
initialized.

5 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

Total unit workload 0.75h

TS 4.2. Introduction to Operators and Expressions in the Greenfoot Environment

 Operators
The teacher introduces the term
operator. The teacher should make
this concept more relatable to
students by using real-life examples
(e.g., buying products at the market).
Afterwards, the teacher introduces
various operator types.

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Arithmetic operators and expressions
Teacher can explain operators
already known from other courses
(e.g., math and math arithmetic
operators).These operators are
considered in the context of the
Greenfoot Environment and Java
programing language,Teacher
discusses various terms: operator,
operand, operator
precedence.Additional examples can
be considered. Additional example
may include defining local variables
to retrieve and manipulate an entity's
x-position and y-position, thereby
changing its position by increasing
the variable's values.

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Boolean operators
Teacher can explain operators
already known from other courses
(e.g., math and math Boolean
operators). These operators are
considered in the context of the
Greenfoot Environment and Java
programing language. The teacher
discusses various terms: operator,
operand, operator
precedence.Additional examples may
include defining local variables to
check if an entity's x-position is equal
to its y-position, using a boolean
operator to determine if the entity is
on a diagonal.

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Relational operators
Teacher can explain operators
already known from other courses
(e.g., math and math relational
operators),These operators are
considered in the context of the
Greenfoot Environment and Java
programing language. Teacher
discusses various terms: operator,
operand, operator
precedence.Additional examples may
include defining local variables to
check if one entity's y-position is
below another's, using relational
operators to determine positional
relationships between entities.

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Boolean expressions
The teacher can explain Boolean
expressions in the context of
previously presented operators.
These expressions are considered in
the context of the Greenfoot
Environment and Java programing
language. Teacher discusses
operator, operand, and operator
precedence in the context of boolean
expressions. Additional examples
may be considered. For example,
boolean expressions can be used to
verify that entity’s position is inside
defined arena’s dimension of the
game.

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Object expression
Teacher can explain object
expression in the context of object-
oriented design. These expressions
are considered in the context of the
Greenfoot Environment and Java
programming language. The teacher
discusses operator, operand, operator
precedence, and class casting in the
context of object
expressions.Additional examples can
be explored. For instance, comparing
references of two object entities to
check if they overlap.

5 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

 Reference variable and its null value
Teacher can explain reference
variables in the context of object-
oriented design. These reference
variables are considered in the
context of the Greenfoot Environment
and Java programing language.The
teacher should explain null reference
value.

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

 Task 4.1
Teacher should discuss Enemy's
act() method. Teacher explains how
to use local variables in the code, for
example to use “rotation” variable.
Teacher should describe difference
between this.rotation and rotation.
Teacher should describe
getOneIntersectingObject(_cls_)
method behavior. It is used and
instance is stored in proper local
variable (class casting is required). If
there is no intersection object it
returns null value. Based on the
performed boolean evaluation, an
appropriate acting is performed (i.e.,
rotating or turning). The results are
discussed by the teacher and peers.

15 min Practice Onsite Synchronous Teacher
present

No No No No No

Total unit workload 1.58h

TS 4.3. Introduction to Constructors in the Greenfoot Environment

 Basic concepts of constructors
The teacher introduces the term
constructor within the context of
Class and Object concepts in Object-
Oriented Programming (OOP).
Constructors are used to initialize a
concrete instance (i.e., an object) of a
class.

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Code explanation
 teacher should discuss constructors
within the context of Class and Object
OOP concepts: constructors are used
to initialize concrete instances of a
class. In addition, constructors are
always invoked and can be defined
either implicitly or explicitly. There
are default constructors (which are
implicitly defined) as well as
parameterized and non-
parameterized constructors (which
are explicitly defined by a
programmer). The differences
between parameterized and non-
parameterized constructors should
also be discussed. To make this
concept more relatable to students,
the teacher should use real-life
examples.

20 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task: Rename class MyWord to Arena
The previously defined class MyWorld
should be renamed. In this context, a
new name should be chosen,
specifically Arena. Additionally, the
constructor of the class should also
be renamed from MyWorld() to
Arena().

5 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task: Create layout of Arena
In this activity, a custom layout for
Arena should be created. The custom
layout should be provided within the
constructor of the Arena class:one
instance of Enemy, one instance of
Orb, and at least one instance of
Direction should be added. After
declaring and initializing the
variables, properties should be
assigned by invoking the appropriate
methods. Finally, these objects
should be incorporated into the arena
by invoking the addObject(Actor)
method.

30 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

Total unit workload 1.08h

TS 4.4. Introduction to Attributes in the Greenfoot Environment

 Task: Movement-related problem and
solution
The teacher should explain that the
Enemy is currently moving two cells
at once, which causes issues with its
movement. To address this, the
speed of the Enemy can be modeled
differently. The Enemy instance will
now always move one cell at a time.
Additionally, a new attribute called
moveDelay can be defined, which
will cause the Enemy instance to
move only after a certain number of
act() method calls have passed.

30 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Attributes
The teacher introduces the concept of
attributes within the context of Class
and Object concepts in Object-
Oriented Programming (OOP).

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Parameters of constructors
The teacher introduces the concept of
parameters of the constructorin
context of Class and Object concepts
in Object-Oriented Programming
(OOP).

10 min Acquisition Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task: Enemy.moveDelay
A new attribute named moveDelay
of type int will be added to the Enemy
class. A parameterized constructor
will also be defined to initialize this
attribute, with the attribute being set
to the value provided by the
parameter. The code in the Arena
class will be adjusted accordingly.

20 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task: Movement of enemies
respecting delay
The act() method of the Enemy class
will be updated so that the Enemy
moves only after the specified
number of moveDelay calls of the
method. Additionally, a new attribute
called nextMoveCounter of type int
will be introduced and initialized to 0.
The act() method will be modified to
call this.move(1) only when
nextMoveCounter reaches 0. After
the movement, nextMoveCounter
will be reset to the value of
moveDelay. If the Enemy instance
cannot move because
nextMoveCounter has not yet
reached 0, nextMoveCounter will
be decreased by 1.

30 min Practice Onsite Synchronous Teacher
present

No No No No No

Total unit workload 1.66h

TS 4.5. Introduction to Constructor Overloading in the Greenfoot Environment

 Basic concepts of constructor
overloading
The concepts of constructors
overloading are discussed.

5 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task: Parametric constructor of class
Direction
In this session, a parameterized
constructor is defined for the
Direction class with a single
parameter, rotation, of type int.
Within the constructor body, the
created instance should be rotated
based on the value of this parameter.
The code in the Arena class should be
updated accordingly.

25 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

 Task: Overload constructors in class
Direction
In this session an overloaded
constructor is defined in the Direction
class. A non-parameterized
constructor is added, and within its
body, the parameterized constructor
is invoked with the argument rotation
set to 0. The code in the Arena class
should be updated accordingly, using
the non-parameterized version of the
Direction class constructor where
possible.

25 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Theory revision
A review of the previously discussed
concepts was conducted during this
session.

20 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Automated

No No

Total unit workload 1.25h

5. Association
Understanding the basic principles of object-oriented programming (30%), Understanding the basics of algorithmisation (30%), Understanding the syntax of the Java programming

language (10%), The ability of creating own programs with the use of OOP (30%)

TS 5.1. Greenfoot Objects on a Mission: Exploring Methods and Associations

 Task 5.1
Discuss what should happen when
enemy reaches orb.

10 min Investigation Onsite Synchronous Teacher
present

Yes Yes Teacher,
Automated,
Peer

No No

 Task 5.2
Discuss how instance of class Enemy
should interact with the relevant
objects using messages when hitting
instance of class Orb.

15 min Investigation Onsite Synchronous Teacher
present

Yes Yes Teacher,
Automated,
Peer

No No

 Task 5.3
Attribute Enemy.attack and Orb.hp.

10 min Acquisition Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Method
The teacher begins by explaining the
concept of methods as encapsulated
actions or behaviors within a class.
Using practical examples, the teacher
demonstrates the syntax and
structure of method definitions,
illustrating how methods are invoked
on objects. Students learn about
different types of methods, including
those that perform actions (void
methods) and those that return
values (return type methods). The
teacher explains how parameters are
passed to methods, highlighting the
importance of parameter types and
order. Through guided coding
exercises, students practice defining
methods with various parameter and
return types, and invoking these
methods on object instances. They
explore scenarios where methods
perform actions, modify object states,
or return specific values, solidifying
their understanding of method
functionality within a class.

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 5.4
Getter of attribute Enemy.attack.

5 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 5.5
Create and test method
Arena.respawn(Enemy).

10 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.6
Create and test method
Orb.hit(Enemy).

10 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

Total unit workload 1.25h

TS 5.2. Greenfoot Objects on a Mission: Exploring Associations and Advanced Method Calls

 Association
The lesson begins with a brief review
of associations between classes in
object-oriented programming. The
teacher engages students in a
discussion to clarify how objects
interact with each other through
associations, using practical
examples from the Greenfoot
environment to illustrate these
concepts.Students delve into
understanding that associations
define how classes collaborate, such
as how an Enemy can affect an Orb in
a game scenario.

10 min Discussion Onsite Synchronous Teacher
present

No Yes Teacher No No

 Task 5.7
Call method Orb.hit(Enemy) from
Enemy.

15 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Explanation of the code for methods
Greenfoot.stop() and
World.getWorldOfType(_cls_)

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.8
Students starts implementing the
Orb.hit(Enemy) method, a crucial
step in defining the interaction
between an enemy and the orb within
their game scenario.

30 min Practice Onsite Synchronous Teacher
present

No Yes Teacher,
Automated,
Peer

No No

Total unit workload 1.16h

TS 5.3. Greenfoot Objects on a Mission: Towers, Bullets, and Strategic Interactions

 Task 5.9
Create classes Bullet and Tower.

10 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.10
Discuss how the instance of class
Bullet should move and what should
happen when it reaches instance of
class Enemy or edge of the arena.

10 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.11
Implement movement of instance of
class Bullet

30 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.12
Discuss how the instance of class
Tower will shoot instance of class
Bullet.

15 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.13
Discuss how instance of class Tower
should interact with the relevant
objects using messages when
shooting-

15 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.14
Implement shooting of instance of
class Tower

30 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.15
Towers in Arena (20 minutes)

20 min Production Onsite Synchronous Teacher
present

No No Teacher No No

Total unit workload 2.16h

TS 5.4. Greenfoot Objects on a Mission: Bullets, Enemies, and Game Dynamics

 Task 5.16
Discuss how instance of class Bullet
should interact with the relevant
objects using messages.

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 5.17
Implement instance of class Bullet
hitting instance of class Enemy (30
minutes)

30 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Explanation of the code
Explanation of the code for methods
Greenfoot.showText(String, int, int),
Greenfoot.getRandomNumber(int)
and World.act()

15 min Acquisition Onsite Synchronous Teacher
present

No No No No No

 Task 5.18
Spawn of enemies and end of the
game (30 minutes)

30 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Revision of Associations 20 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

Total unit workload 1.83h

6. Inheritance
Understanding the basic principles of object-oriented programming (40%), Understanding the basics of algorithmisation (20%), Understanding the syntax of the Java programming

language (10%), The ability of creating own programs with the use of OOP (30%)

6.1. Introduction to Inheritance in the Greenfoot Environment

 Basic concepts of inheritance
In the introduction section context
related to the previous sessions is
established. Teacher introduces the
concept ofinheritance. Teacher
should make this concept more
relatable to students by using real-life
examples (e.g., if parent-child
relation is considered, children inherit
characteristics from their parents, like
hair type, eye color, etc.). The
benefits of inheritance should be
discussed. These concepts are
considered in the context of the
Greenfoot Environment and Java
programing language.

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Class hierarchy and inheritance
Teacher introduces the class
hierarchy in the context of
inheritance concept. Teacher
introduces ancestor class (also known
as: super class, parent class) and
descendant classes (also known as:
subclasses, child classes):

o Previously examined real-
life classes can be
discussed in this context,

o In this context, it should
be discussed that
subclasses can inherit
properties (i.e., attributes
and methods) from
theparent class,

o However, it should be
discussed that subclasses
can incorporate additional
properties not available in
the parent class,

Benefits of the class hierarchy in the
context of inheritance conceptshould
be discussed. It should be explained
that in Java programing language
each class can have multiple
subclasses, but only one parent class.
The role of the Object class in the
context of class hierarchy and
inheritance can be discussed.

15 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 6.1
In the context of game development,
the Orb and Direction classes are
considered. It should be observed
that these classes react to messages.
Therefore, a common method for
acting, the act() method, should be
identified.

15 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 6.2
Based on the identified common
properties, new class PassiveActor
containing act() method should be
implemented:

o These classes
(PassiveActor, Orb, and
Direction) should be used
for representing class
hierarchy in the context
of inheritance,

o Teacher can visually
represent class hierarchy
by using the hierarchy
diagram.

o Teacher alerts the
students what changed in
the Greenfootenviroment
when Actor in substituted
with PassiveActor in the
class

15 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Introduction to abstract classes
The concept of abstract class is
introduced by the teacher. It should
be discussed that abstract classes
serve as blueprints for other classes
and cannot be instantiated. However,
they are essential in designing class
hierarchies. Real-world examples
related to abstract classes and
subclasses can be discussed by the
teacher and students (e.g., class
Computer with basic properties can
be defined as an abstract class, and
can be specialized to Console,
Desktop, Laptop, and Mobile Phone,
each with a specific set of properties,
etc.). Another example could be
geometric figures. Rectangle or
triangle can be inherited from
abstract class figure. When
calculation girt and area of general
figure we do not have exact formula.
But we have exact formula for
rectangle and triangle. Square can be
inherited from rectangle. Students
should discuss more examples of
geometric figures and bodies.

5 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 6.3
Definition of an abstract class in the
game.
The concept of abstract class is
considered in the Greenfoot
Environment and Java programing
language. In the context of game
development, the PassiveActor class
is a blueprint for acting. Therefore, it
is defined as an abstract class and
established as the ancestor of the
Orb and Direction classes, making
Orb and Direction its descendants.
Since the act() method is already
defined in the PassiveActor class, it
should be removed from the Orb and
Direction classes.

10 min Production Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

Total unit workload 1.25h

6.2. Inheritance Concepts in the Greenfoot Environment (Part I)

 Task 6.4
Identification of common properties
related to entity movement.
The focus is onBullet and Enemy
classes, which act similarly during
lifetime. It should be observed that
these classes move the same way
and afterwards react to the
surroundings.

15 min Investigation Onsite Synchronous Teacher
present

No No Teacher,
Peer

No No

 Task 6.5
Definition of an abstract class related
to entity movement.

Based on the identified common
properties, new abstract class
MovingActor containing act() method
should be implemented. Additionally,
MovingActor is established as the
ancestor of the Bullet and Enemy
classes, making Bullet and Enemy its
descendants. It should be discussed
that the subclasses inherit common
properties from the parent
class.TheMovingActor class is a
blueprint for class design and should
be declared as an abstract.

15 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Task 6.6
Identification of class-specific
properties related to entity
movement.
Class-specific properties related to
entity movement are examined. The
act() method of respective classes is
investigated, as well as the attributes
moveDelay and nextMoveCounter. It
can be observed that code of act()
method responsible for movement is
the same.

15 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Introduction to the super keyword in
the context of inheritance
The teacher introduces the super
keyword. The super keyword in the
context of inheritance was
introduced:

o super keyword can be
used in order to invoke
constructor from the
parent class,

o super keyword can be
used in order to invoke
method from the parent
class,

o super keyword can be
used in order to invoke
attribute from the parent
class,

o super must be first
statement

Benefits of using the super keyword
in the context of inheritance should
be discussed.
It should be noted that there is a
situation, in which this is true - i. e. in
contructor.

20 min Discussion Onsite Synchronous Teacher
present

No No No No No

 Task 6.7
Refactoring code related to entity
movement.
Code refactoring related to entity
movement was performed. Previously
identified attributes moveDelay and
nextMoveCounter from Bullet and
Enemy subclasses are moved to the
ancestor class MovingActor.
Parametric constructor to initialize
these attributes is defined in
MovingActor class. This constructor
with proper parameters was invoked
from the Bullet and Enemy
subclasses using the super keyword.
The code responsible for movement
in act() method of subclasses Bullet
and Enemy was moved to act()
method of MovingActor class, while
the rest of the implementation
remains unchanged in the subclasses.
Finally, parent version of method
act() is invoked as first line of method
act() in subclasses Bullet and
Enemy.It should be discussed that
subclasses can incorporate additional
properties not available in the parent
class (i.e., different implementation of
act() method).

30 min Production Onsite Synchronous Teacher
present

No No Teacher No No

Total unit workload 1.58h

6.3. Inheritance Concepts in the Greenfoot Environment (Part II)

 Task 6.8
Creation of custom enemies.

The focus in on the Enemy class and
definition of additional subclasses
representing different enemies (e.g.,
Frog and Spider). Images and
parameterless constructors (with
appropriate invocation of the parent
constructor) should be defined for
each enemy type.

30 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Introduction to the Liskov
Substitution Principle
The Liskov Substitution Principle is
introduced. This principle is part of
the SOLID principles of object-
oriented design. The principle states
that functions that use pointers or
references to parent classes should
be able to use objects of subclasses.
Real-word examples should be
discussed (e.g., if Computer class is
defined as the parent class, and
Console, Desktop, Laptop, and Mobile
Phone classes are defined as
subclasses, the Liskov Substitution
Principle says that functions which
are using Computer class will also
work with all subclasses, without any
change in the code). Benefits of using
the Liskov Substitution Principlein the
context of inheritance should be
discussed.

20 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 6.9
Spawning of custom enemies.

The task is dedicated to spawning
custom enemies. The Arena.spawn()
method is examined, and custom
enemies are created through various
decisions and stored in a variable of
type Enemy. It should be observed
that no other code in the application
needs to be changed, demonstrating
the application of the Liskov
Substitution Principle.

20 min Practice Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

Total unit workload 1.16h

6.4. Inheritance Concepts in the Greenfoot Environment (Part III)

 Task 6.10
Discuss hierarchy of Arenas.
The Arena class hierarchy is
discussed,It should be observed that
the subclasses of Arena are
responsible for custom layouts (e.g.,
positions of Orb and Direction
instances, size of the arena). These
tasks are performed in the
constructors of the subclasses, which
set and store spawning positions,
rotations, and dimensions of the
arena.

20 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 6.11
Make universal Arena.
Based on the previous discussion, a
universal Arena class is introduced.
Additional attributes (spawnPositionX,
spawnPositionY, and spawnRotation)
are defined, initialized in the
constructor, and used in the spawn()
and respawn(Enemy) methods.
Attributes related to the arena's
dimensions (width and height) are
also defined and initialized in the
constructor. As the Arena class
serves as a blueprint for defining
concrete arenas, it is defined as an
abstract class.

30 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 6.12
Create DemoArena.

Based on the identified Arena class,
the DemoArena subclass is defined.
The DemoArena constructor is
defined, invoking the parent class
constructor, and the code responsible
for the layout of directions, orbs, and
towers is moved from the Arena
constructor to the DemoArena
constructor. Finally, a new instance of
the DemoArena class is created.To
activate Demoarena, right click and
select new DemoArena.

15 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Task 6.13
Create custom arenas.
Other innovative subclasses of class
Arena are created. Code can be
shared with other students in the
group.

30 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Inheritance theory revision
The concept of inheritance is
reviewed. Benefits of inheritance are
reviewed. The class hierarchy and its
benefits in the context of inheritance
concept are discussed. The concept
of abstract class is reviewed. The
super keyword in its benefits in the
context of inheritance are discussed.
The Liskov Substitution Principle is
reviewed and benefits of using the
Liskov Substitution Principlein the
context of inheritance are discussed.
Real-life inheritance
examplesarediscussed.Game-related
inheritance examples and
implementation are discussed.

20 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

Total unit workload 1.91h

7. Encapsulation
Understanding the basic principles of object-oriented programming (50%), Understanding the basics of algorithmisation (10%), Understanding the syntax of the Java programming

language (20%), The ability of creating own programs with the use of OOP (20%)

7.1. Exploring Encapsulation through Game Development with Greenfoot (Part I)

 Introduction
The teacher should start the
previously developed game and
observe how different actors behave.
Suggest developing another type of
tower that can be manually controlled
to remove enemies more easily. The
user should be able to control one
tower at a time. When the tower is
clicked, it should become manually
controlled. To indicate which tower is
manually controlled, the currently
controlled tower should have a
different appearance.

5 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 7.1
Since students already know how to
make a descendant class, let them
form teams and create a
ManualTower class as a descendant
of the Tower class. Students should
implement both the constructors and
the act method, ensuring that the
super constructors are called from
these methods. In this part of the
class, students will review the
material, apply it, and improve their
practical knowledge of inheritance.
(Team Collaboration and Coding)

20 min Production Onsite Asynchronous Teacher
not
present

No Yes Teacher No No

 Task 7.2 and 7.3
The teacher should prepare icons for
the manually controlled tower. To
change the icon of the object
programmatically, the teacher should
explain to the students how to use
the Actor.setImage(String) method.
Allow students some time to test this
function.

The teacher should discuss with
students how to determine whether
the tower is manually controlled.
Emphasize that it is not only
important to change the object's
state but also to update its image.
Highlight that if a user wants to
change the state of a Tower object
and only changes the attribute
directly, the image will remain the
same. This discussion should help
students understand the need to
change the value of an attribute
through a method and to keep
attributes private rather than public.
Explain to the students that this
practice is called encapsulation,
where the internal state is hidden,
and public methods are used to
change that state in a controlled
manner.

Allow the students to implement the
logic of the function. Let them
manually invoke their method and
observe changes in the internal state.

30 min Production Onsite Synchronous Teacher
present

No Yes Teacher,
Automated,
Peer

No No

 Discussion
The teacher should point out that the
tower's state can be changed only by
manually invoking the method. Point
out that the mouse could be outside
the world, in which case the mouse
information will be null. Remind
students that the act() method is
constantly running during the game
and that it should check whether the
object has been clicked and only then
invoke the changeControl() method.
Highlight that the logic for processing
the control should be encapsulated
inside a separate
methodprocessUserControl().

35 min Discussion Onsite Synchronous Teacher
present

No Yes No No No

 Code explanation
Consider how to change the actor's
state by clicking on the object. To
implement this, the
GreenFoot.mouseClicked(Object)
method should be explained. Also,
introduce MouseInfoobject, which can
be used for retrieving informations
about the mouse position.

25 min Practice Onsite Synchronous Teacher
present

No Yes No No No

 Task 7.4
After defining the
processUserControl() private method,
let students implement its logic.
When the mouse is clicked, the
controlled tower should change. If the
tower is manually controlled, it
should follow and be directed towards
the mouse. Remind them that it is
possible for mouse to be outside the
world. After grouping students into
teams, let them implement the logic
of the processUserControl() method.

One or two teams will present their
work, and the group will discuss the
results along with the teacher.By the
end of the session, all students
should understand how this method
is implemented.

(Team Formation and Project
Assignment)

10 min Assessment Onsite Synchronous Teacher
present

No Yes No No 0 Formative Teacher

Total unit workload 2.08h

7.2 Exploring Encapsulation through Game Development with Greenfoot (Part II)

 Flipped Classroom Session
Students should identify the problem
with the previously implemented user
control and student should
investigate how to solve the
problem.

30 min Acquisition Onsite Synchronous Teacher
present

No Yes Teacher,
Automated,
Peer

No No

 Class attributes
Explain what class attributes are:
variables that belong to the class
itself, rather than instances of the
class. Relate this concept to the
game scenario discussed earlier,
where having a centralized attribute
to manage the currently selected
tower could solve the issue.

5 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

 Task 7.6
Add evidence of manually controlled
tower.
To track which tower is currently
selected in the game, add private
static attribute-controlledInstance to
the ManualTower class and initialize it
to null. Static attribute is related to
the whole class, not to an object of a
class.Hence, defining a static variable
will allow us to determinewhether
tower has been selected and, if so,
which one, byreferencing theclass
name, without needing to access
aspecific object. The teacher should
emphasize that there is one
controlledInstancefor the whole
game. At the beginning,
controlledInstance should be
initialized to null, as there is no
selected tower. Inspect the internal
state of class. Here the teacher
explains differences between static
and non-static attributes. The teacher
with studentsdiscussbenefits of using
static attributes in games. Teacher
should also mention here static
methods and discuss with the
students where usingstatic methods
is beneficial.

5 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Method of class
Present the concept of class methods
that can operate on class-level
data.Discuss the need for methods
like changeControlledInstance to
manage switching the currently
controlled tower. Emphasize that
these methods can be called without
needing an instance of the class. For
example, school bell rings for
everyone at the same time, it doesn’t
matter who you are, on the other
hand, checking a student’s homework
requires information about that
specific student.

10 min Practice Onsite Synchronous Teacher
present

No No Teacher No No

 Task 7.7
Change of manually controlled tower
from centralized place.
Teacher should add method
changeControlledInstance to change
manually controlled tower. Parameter
of the method will be the tower user
wants to select. First, it should be
checked whether the controlled
instance is currently selected. If it is,
nothing should change, but if the
passed instance is different than we
should change currently controlled
instance (reference to the currently
controlled instance should be
changed). Test out the function
manually and observe that the icons
of the towers don’t change. Point out
that only changing the reference of
the controlled instance,wouldn’t
change the control and that it should
be done manually. Add the code
which releases the currently
controlled instance and, after
updating the reference, add code
which sets manual control of newly
controlled instance. Highlight the
need for checking null references
which could appear if there is no
currently controlled instance and if
there is no newly controlled instance
(when the parameter is null).

20 min Production Onsite Synchronous Teacher
present

No No Teacher,
Automated,
Peer

No No

 Task 7.8
Invoke change of manually controlled
tower.
Manually test out the function
whether it works correctly.
Afterwards, discuss with the students
where should this function be
invoked. Method should be invoked
inside of Arena’s act() function and
inside of processUserControll()
function. Lastly, make method
ManualTower.changeControl(Boolean)
private and observe changes of
instance of ManualTower.

15 min Production Onsite Synchronous Teacher
present

No No Teacher No No

 Theory revision
Summarize the session, highlighting
the importance of class attributes and
methods in managing game logic
efficiently.Encourage students to
explore further by applying these
concepts in their own programming
projects.

10 min Discussion Onsite Synchronous Teacher
present

No No Teacher No No

Total unit workload 1.58h

Total course workload 35.5h

	Tower defense (OOP4Fun Book)

