Modeling and Computer Simulation

Modeling and Con	nputer Sin	nulation								
19/04 - 21/04 (FON)	26/04 - 28/	04 (UNIVAQ)	03/05 - 06/05 (UNIZA)							
Planned ECTS: 2										
Number of learners	: 25									
Mode of delivery: O	nline									
Status: COMPLETED										
Course public acces	ss: Public									
Contributors: Igor Balaban, Nikola Z	Zornić, Peter	Márton, Vittor	o Cortellessa							
			Course learning out	tcome					Level	Weight
Students are able to i	dentify probl	ems in system	that can be solved using mod	deling and com	outer simulation	١.			Applying	1
Students are able to f	ormulate sim	nulation exper	iments.						Creating	1
Students are able to o	compare sim	ulation experi	ments and conduct sensitivity	analysis.					Understanding	1
Students are able to e	evaluate resu	ılts of the simu	lation in order to improve the	system.					Analysing	1
Students are able to i	dentify mode	el input param	eters from the observation of	the system.					Applying	1
									Total	weight: 5
Topic / Unit name	Workload	Learning	Mode of delivery	Groups	Collaboration	Feedback	1	Assess	ment	
		type					activity	Points	Туре	Providers
Introduction to	Modelin	ng and Co	mputer Simulation							
Introduction to Mo	deling and	Computer	Simulation							

Introduction to Modeling and Computer Simulation Definitions: system, model, simulation. Why do we need MCS, advantages and disadvantages. Types of models and simulation.	60 min	Acquisition	Online	Synchronous	Teacher present	No	No	No	No	No		
Total unit workload	1h											
System dynami	ics											
Introduction to syst	tem think	ing, modeling	g syster	n structure, c	ausal loc	ps						
Introduction	45 min	Acquisition	Online	Synchronous	Teacher present	No	No	No	No	No		
System dynamics model building	135 min	Discussion	Online	Synchronous	Teacher present	No	Yes	No	No	No		
System Dynamics preparation for theoretical assessment	180 min	Investigation	Online	Asynchronous	Teacher not present	No	No	No	No	No		
System dynamics theoretical assessment	45 min	Assessment	Online	Synchronous	Teacher present	No	No	Teacher	No	15	Summative	Teacher
Total unit workload	6.75h											
System dynamics t	ools: caus	sal loop diagi	ams an	nd stock and f	low diagı	rams						
CLD examples	45 min	Practice	Online	Synchronous	Teacher present	No	Yes	No	No	No		

CLD practice	135 min	Production	Online	Synchronous	Teacher present	Yes	Yes	Teacher	No	No		
Stock and flow diagrams introduction	45 min	Practice	Online	Synchronous	Teacher present	No	Yes	No	No	No		
Stock and flow diagrams practice	135 min	Production	Online	Synchronous	Teacher present	Yes	Yes	Teacher	No	No		
System dynamics tools preparation for practical assessment	240 min	Practice	Online	Asynchronous	Teacher not present	No	No	No	No	No		
System dynamics tools practical assessment	60 min	Assessment	Online	Synchronous	Teacher present	No	No	Teacher	No	20	Summative	Teacher

Total unit 11h workload

Queueing-based software/hardware modeling

Queueing Theory - Example modeling and solution in the software/hardware domain

Introduction to queueing theory	60 min	Acquisition	Online	Synchronous	Teacher present	No	No	No	No	No
Basic concepts:										
service center,										
queue, scheduling										
policies, routing.										
Performance										
analysis: Input										
parameters										
(workload, service										
rate), Output										
indices (response										
time, throughput,										
utilization).										

Preparation for software/hardware context modeling Investigation of approaches for modeling software/hardware systems in their standard lifecycle.	120 min	Investigation	Online	Asynchronous	Teacher not present	No	No	No	No	No
Queueing Networks in the context of Software/Hardware Providing semantics to QN in the context of SW/HW systems: service centres as platform devices, jobs as resource requests originated by users while executing the software.	60 min	Discussion	Online	Synchronous	Teacher	No	No	No	No	No
Operational laws and bottleneck identification Utilization law, Little's law, Forced flow law. Bottleneck identification and possible removal actions.	90 min	Acquisition	Online	Synchronous	Teacher present	No	No	No	No	No

Laboratory on QN solver A Queueing Network solver will be used in	180 min	Practice	Online	Synchronous	Teacher present	No	No	No	No	No
collaboration with students to solve a driving example. A special emphasis will be given to the nterpretation of results (e.g., sensitivity and 'what-if" analyses).										
Queueing Network practice One or more case studies will be provided to students, with the goal of building and solving QN models.	90 min	Assessment	Online	Synchronous	Teacher present	No	No	No	No	No
Total unit workload	10h									

Process oriented simulation

Introduction to process oriented simulation

Basic system analysis - system components Introduction - definition of system - components - customers and resources and their attributes - example	30 min	Acquisition	Hybrid	Synchronous	Teacher present	No	No	No	No	No
Basic activities - customer arrival, customer departure, waiting for free resource, delay (service) Introduction - definition of system - components - customers and resources and their attributes - example	45 min	Discussion	Hybrid	Synchronous	Teacher	No	No	No	No	No
Introduction to simulation software AnyLogic AnyLogic environment - Example of simple simulation model	30 min	Acquisition	Hybrid	Synchronous	Teacher present	No	No	No	No	No

Simple service system model - museum - selling of tickets	45 min	Discussion	Hybrid	Synchronous	Teacher present	No	No	No	No	No
The teacher										
describes the										
museum and the										
first subsystem -										
selling tickets. It is										
a simple process -										
the customer										
arrives, he/she										
wants to buy the										
ticket, he/she is										
waiting in a queue										
if necessary, the										
customer leaves										
the subsystem.										
The teacher										
discusses with										
students basic										
activities in this										
system and they										
prepare mutually										
the simulation										
model concept.										

Simple service system model - museum - selling of tickets - AnyLogic The teacher describes the basic blocks of the AnyLogic simulation software - create, queue, delay, sink. The students use the simulation software to create a simulation model.	30 min	Practice	Hybrid	Synchronous	Teacher	No	Yes	Teacher	No	No
Looking for own system and examples of systems Students are looking for their own systems to develop own model during the course. They are reading and watching different sources - web, TV, journals	45 min	Investigation	Online	Asynchronous	Teacher not present	No	No	No	No	No

Simple service system - own system and model Students select their own system to simulate. Students work in groups. Students use their knowledge and develop their skills.	45 min	Production	Hybrid	Asynchronous	Teacher not present	Yes	Yes	No	No	No
Simple service system - quizz The students answer questions in the quiz. The teacher receives feedback about the real understanding of the subject matter.	30 min	Assessment	Online	Asynchronous	Teacher not present	No	No	No	No	No
Total unit workload	5h									

Modelling of advanced processes

Advanced process oriented modelling 1 The teacher introduces students to the advanced process oriented modelling - ways and possibilities to create a simulation model that reflects different facts in the modelled systems.	30 min	Acquisition	Hybrid	Synchronous	Teacher	No	No	No	No	No
Advanced service system model - museum - selling of tickets The teacher describes the museum and the first subsystem - selling of tickets. The teacher gives additional information about this subsystem - priority in waiting for disabled customers, arrival of customers in groups, two employees in the cashdesk	45 min	Discussion	Hybrid	Synchronous	Teacher	No	No	No	No	No

Advanced service system model - museum - selling of tickets - AnyLogic The teacher describes ways to simulate new facts about the subsystem in the AnyLogic simulation software - new customer, customer class, queue priority, service, resource pool. The students use the simulation software to create a simulation model.	30 min	Practice	Hybrid	Synchronous	Teacher present	No	Yes	Teacher	No	No
Advanced process oriented modelling 2 The teacher introduces students to the advanced process oriented modelling - ways and possibilities to create a simulation model that reflects different facts in the modelled systems.	30 min	Acquisition	Hybrid	Synchronous	Teacher	No	No	No	No	No

Advanced service system model - museum - exhibitions	45 min	Discussion	Hybrid	Synchronous	Teacher present	No	No	No	No	No
The teacher										
describes the										
museum and the										
following										
subsystems -										
exhibitions. The										
teacher gives										
additional										
nformation about										
these subsystems										
turnstiles,										
selecting from										
more possibilities										
for customer										
service, creating of										
customer groups										
for a guided										
exhibition, new										
resources - guides										

Advanced service system model - museum -	30 min	Practice	Hybrid	Synchronous	Teacher present	No	Yes	Teacher	No	No
exhibitions - AnyLogic The teacher describes ways to simulate new facts about the subsystem in the AnyLogic simulation software - selecting from options in the service, different ways to model customer service,										
creating customer groups (batches). The students use the simulation software to create a simulation model.										
Advanced service system 1 - own system and model Students select their own system to simulate. Students work in groups. Students use their knowledge and develop their skills.	45 min	Production	Hybrid	Asynchronous	Teacher not present	Yes	Yes	No	No	No

Advanced process oriented modelling 3 The teacher introduces students to the advanced process oriented modelling - ways and possibilities to create a simulation model that reflects different facts in the modelled systems.	30 min	Acquisition	Hybrid	Synchronous	Teacher	No	No	No	No	No
Advanced service system model - museum - breaks and interruptions in services The teacher describes the museum and the following subsystems - exhibitions. The teacher gives additional information about these subsystems - planned and unplanned breaks and interruptions in services (lunch break, failure,)	45 min	Discussion	Hybrid	Synchronous	Teacher present	No	No	No	No	No

Advanced service system model - museum - breaks and interruptions in services - AnyLogic The teacher describes ways to simulate new facts about the subsystem in the AnyLogic simulation software - planned and unplanned breaks and interruptions in services (lunch break, failure,). The students use the simulation software to create a simulation model.	30 min	Practice	Hybrid	Synchronous	Teacher present	No	Yes	Teacher	No	No
Advanced service system 2 - own system and model Students select their own system to simulate. Students work in groups. Students use their knowledge and develop their skills.	45 min	Production	Hybrid	Asynchronous	Teacher not present	Yes	Yes	No	No	No

the subject matter. Total unit workload	Advanced service system - quizz The students answer questions in the quiz. The teacher receives feedback about the real	15 min	Assessment	Online	Asynchronous	Teacher not present	No	No	No	No	No
	Total unit	7h									

Animation - introduction The students are watching videos about animation and its importance in the simulation model.	30 min	Acquisition	Online	Asynchronous	Teacher not present	No	No	No	No	No
Animation - museum The teacher describes how animation could be used for the museum simulation model. Students discuss the possible ways and requirements.	45 min	Discussion	Hybrid	Synchronous	Teacher present	No	No	No	No	No

Animation - museum - AnyLogic The teacher describes ways to create animation in the AnyLogic simulation software. The students try to develop the possible application of different animation features.	30 min	Practice	Hybrid	Synchronous	Teacher	No	Yes	Teacher	No	No
Animation in different simulation tools Students are discovering different simulation tools and what animation environments they offer.	45 min	Investigation	Online	Asynchronous	Teacher not present	No	No	No	No	No
Animation - own system and model Students create own animation. Students work in groups. Students use their knowledge and develop their skills.	45 min	Production	Hybrid	Asynchronous	Teacher not present	Yes	Yes	No	No	No
Total unit	3.25h									

workload

How to evaluate simulation outputs	30 min	Investigation	Online	Asynchronous	not	No	No	No	No	No
what type of esults are					present					
equired by										
ustomers?										
Students are										
ooking for a										
lefinition of										
imulation										
utputs. They are										
eading different										
nal reports of										
imulation studies										
rom open access										
ibraries.										
Recording of imulation outputs	30 min	Acquisition	Hybrid	Synchronous	Teacher present	No	No	No	No	No
introduction										
he teacher										
ntroduces theory										
related to										
simulation output										
ecording.										

Simulation results - museum - AnyLogic The teacher describes ways to record simulation outputs in the AnyLogic simulation software. The students try to use possible applications of different statistical tools.	30 min	Practice	Hybrid	Synchronous	Teacher present	No	Yes	Teacher	No	No
Simulation results - own system and model Students create their own statistics in their simulation models. Students work in groups. Students use their knowledge and develop their skills.	45 min	Production	Hybrid	Asynchronous	Teacher not present	Yes	Yes	No	No	No
Experiments - introduction The teacher introduces theory related to experiments and their evaluation.	30 min	Acquisition	Hybrid	Synchronous	Teacher present	No	No	No	No	No

Experiments - museum - AnyLogic The teacher describes ways to define experiments in the AnyLogic simulation software. The students try to develop applications of different statistical tools.	30 min	Practice	Hybrid	Synchronous	Teacher present	No	Yes	Teacher	No	No
Experiments - own system and model Students define and execute their own experiments with their simulation models. Students work in groups. Students use their knowledge and develop their skills.	45 min	Production	Hybrid	Asynchronous	Teacher not present	Yes	Yes	No	No	No
Interpretation of simulation outputs The teacher introduces experience and knowledge related to simulation output interpretation from real simulation studies.	30 min	Discussion	Hybrid	Synchronous	Teacher present	No	No	No	No	No

Simulation results - quizz The students answer questions in the quiz. The teacher receives feedback about the real understanding of the subject matter.	15 min	Assessment	Online	Asynchronous	Teacher not present	No	No	No	No	No
Total unit workload	4.75h									
Total course workload	48.75h									