Introductory mathematical course
|
||||||||||||||||
Introductory mathematical course in calculus for students of IT, engineering, economics etc. Teaching and learning strategies implemented: Flipped classroom (FC), Instruction-based learning and Project-based learning (PBL-WBL)
|
||||||||||||||||
Geplante ECTS: 5 | ||||||||||||||||
Anzahl der Lernenden: 200 | ||||||||||||||||
Bereitstellungsmodus: Blended | ||||||||||||||||
Status: In Planung | ||||||||||||||||
Öffentlicher Zugang zum Kurs: Öffentlich | ||||||||||||||||
Mitwirkende: Blaženka Divjak, Barbi Svetec, Mihaela Bosak, Damjan Klemenčić, Marija Maksimović |
||||||||||||||||
Kurs-Lernergebnis | Niveau | Gewicht | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Explain the concept of the derivative of a real function of one real variable and its geometric interpretation | Verstehen | 10 | ||||||||||||||
Analyze an elementary function using derivatives and sketch its graph | Analysieren | 12 | ||||||||||||||
Apply differential calculus to find local extrema of a function with one variable and inflection points of the function. | Anwenden | 12 | ||||||||||||||
Determine the primitive function and apply integral calculus in calculating surface area and volume. | Anwenden | 12 | ||||||||||||||
Analyze and solve a problem task in the area of mathematical analysis of the function of one variables | Analysieren | 10 | ||||||||||||||
Create a program solution for a specific mathematical problem and present the solution in written format | Erstellen | 16 | ||||||||||||||
Explain the concept of primitive function and integrals of a function with one variable | Verstehen | 10 | ||||||||||||||
Define elementary functions of a real variable, analyze their properties and sketch their graphs. | Analysieren | 10 | ||||||||||||||
Explain a concept of a limit and determine standard limits of functions | Anwenden | 8 | ||||||||||||||
Gesamtgewicht: 100 | ||||||||||||||||
Thema / Einheitsname | Arbeitsbelastung | Lernart | Lieferart | Gruppen | Zusammenarbeit | Rückmeldungen | Mandatory activity | Bewertung | ||||||||
Punkte | Typ | Anbieter | ||||||||||||||
Introduction |
||||||||||||||||
Introduction of the course and TLAs | ||||||||||||||||
Introduction of the course Content, assessment and TLAs |
45 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Disscusssion Students use disscusion online and ask questions, propose ideas |
60 min | Diskussion | Hybrid | Asynchron | Lehrer nicht anwesend | Nein | Ja | Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 1.75h | |||||||||||||||
Real functions of real variables Analysieren Analyze and solve a problem task in the area of mathematical analysis of the function of one variables (40%), Analysieren Define elementary functions of a real variable, analyze their properties and sketch their graphs. (60%) |
||||||||||||||||
The domain of the function. Composition. Bijection. Graph of the function. | ||||||||||||||||
Repetition of basic concepts Students receive a pre-prepared video with which they repeat basic concepts of function and graphs of elementary functions. |
30 min | Erwerb | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Disscusion Students participate in discussions related to the introductory video. They can ask questions that can be answered by other students or a teacher. |
15 min | Diskussion | Online | Asynchron | Lehrer anwesend | Nein | Nein | Kollege, Lehrer | Nein | Nein | ||||||
Quiz (basic concepts) Students take a short quiz which cover the basic notions from the video. |
10 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Lecture Professor checks how many students watched the video lesson and what the quiz results were. Based on the results of the quiz, teacher repeats concepts that are less well understood and designs lecture to upgrade and broad the topic. Students have possibility for additional questions. |
120 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Practice Assistants work with students. During the exercises, students do standard tasks related to the topic. In a group, they solve slightly more complex tasks. |
90 min | Übung | Hybrid | Synchron | Lehrer anwesend | Ja | Nein | Lehrer, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 4.41h | |||||||||||||||
Properties of real functions of a real variable | ||||||||||||||||
Properties of real functions Students receive a pre-prepared video with which they repeat basic properties of real functions. |
30 min | Erwerb | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Disscusion Students participate in discussions related to the introductory video. They can ask questions that can be answered by other students or a teacher. |
15 min | Diskussion | Online | Asynchron | Lehrer anwesend | Nein | Nein | Kollege | Nein | Nein | ||||||
Quiz (properties of real function) Students take a short quiz which cover the basic notions from the video. |
10 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Lecture Professor checks how many students watched the video lesson and what the quiz results were. Based on the results of the quiz, teacher repeats concepts that are less well understood and designs lecture to upgrade and broad the topic. Students have possibility for additional questions. |
120 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Practice Assistants work with students. During the exercises, students do standard tasks related to the topic. In a group, they solve slightly more complex tasks. |
90 min | Übung | Hybrid | Synchron | Lehrer anwesend | Ja | Nein | Lehrer, Kollege | Nein | Nein | ||||||
Independent practical work Students work independently using the material in LMS Moodle and textbook. |
90 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Ja | Automatisiert, Kollege | Nein | Nein | ||||||
Quiz (properties of real function-math problems) Students take a short quiz which cover the basic math problems. |
30 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 2 | Formativ | Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 6.41h | |||||||||||||||
Examples of functions and their graphs | ||||||||||||||||
Examples (real functions of real variable) Students receive a pre-prepared video with which they repeat basic properties of real functions. |
30 min | Erwerb | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Disscusion Students participate in discussions related to the introductory video. |
15 min | Diskussion | Online | Asynchron | Lehrer anwesend | Nein | Nein | Kollege, Lehrer | Nein | Nein | ||||||
Quiz (examples) Students take a short quiz which cover the basic notions from the video. |
10 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Lecture Professor checks how many students watched the video lesson and what the quiz results were. Based on the results of the quiz, teacher repeats concepts that are less well understood and designs lecture to upgrade and broad the topic. Students have possibility for additional questions. |
120 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Practice Assistants work with students. During the exercises, students do standard tasks related to the topic. In a group, they solve slightly more complex tasks. |
90 min | Übung | Hybrid | Synchron | Lehrer anwesend | Ja | Nein | Lehrer, Kollege | Nein | Nein | ||||||
Independent practical work Students work independently using the material in LMS Moodle and textbook. |
90 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Ja | Automatisiert, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 5.91h | |||||||||||||||
Sequences of real numbers and their properties | ||||||||||||||||
Examples (real functions of real variable) Students receive a pre-prepared materials with which they repeat basic properties of sequences. Students have to independently investigate and repeat the basic concepts of arithmetic and geometric series. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Lecture Teacher repeats basic concepts of sequences (definition, arithmetic and geometric sequences, properties and examples of sequences) and upgrades and broad the topic with limit of sequence. |
180 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Quiz (sequences) Students take a short quiz which cover the basic notions from lecture. |
10 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Practice Assistants work with students. During the exercises, students do standard tasks related to the topic. In a group, they solve slightly more complex tasks. |
180 min | Übung | Hybrid | Synchron | Lehrer anwesend | Ja | Nein | Lehrer, Kollege | Nein | Nein | ||||||
Independent practical work Students work independently using the material in LMS Moodle and textbook. |
120 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Ja | Automatisiert, Kollege | Nein | Nein | ||||||
Quiz (sequences-math problems) Students take a short quiz which cover basic math problems. |
30 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 2 | Formativ | Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 10.16h | |||||||||||||||
Limit of functions Anwenden Explain a concept of a limit and determine standard limits of functions (100%), Analysieren Analyze an elementary function using derivatives and sketch its graph (10%), Analysieren Define elementary functions of a real variable, analyze their properties and sketch their graphs. (10%) |
||||||||||||||||
Limit of function | ||||||||||||||||
Motivational example Students receive a pre-prepared video with motivational example for limit of function and intuitive definition. |
60 min | Erwerb | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Lecture Professor checks how many students watched the video lesson. Professor explains basic concepts and designs lecture to upgrade and broad the topic (Heine's and Cauchy's definition of function limit, main properties and theorems with proofs, continuity of function). Students have possibility for additional questions. |
180 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Quiz (limit of function) Students take a short quiz which cover the basic notions from lecture. |
15 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Practice Assistants work with students. During the exercises, students do standard tasks related to the topic. In a group, they solve slightly more complex tasks. |
120 min | Übung | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Independent practical work Students work independently using the material in LMS Moodle and textbook. |
180 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Ja | Automatisiert, Kollege | Nein | Nein | ||||||
Quiz (limit of function-math problems) Students take a short quiz which cover the basic math problems. |
60 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | 2 | Formativ | Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 10.25h | |||||||||||||||
Monthly test 1 Analysieren Analyze and solve a problem task in the area of mathematical analysis of the function of one variables (10%), Analysieren Define elementary functions of a real variable, analyze their properties and sketch their graphs. (20%) |
||||||||||||||||
Preparation fot the test | ||||||||||||||||
Independent practical work Students work independently |
200 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Ja | Automatisiert, Kollege | Nein | Nein | ||||||
Disscussion about technical and content related isssues Students are given information in LMS and then they can ask questions. |
60 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Ja | Lehrer, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 4.33h | |||||||||||||||
Monthly test (kolokvij) | ||||||||||||||||
Test The test is prepared in hybrid delivery mode using individualised assignments from the databases in LMS. |
90 min | Bewertung | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Lehrer, Automatisiert | Nein | 20 | Summativ | Lehrer, Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 1.5h | |||||||||||||||
Analysis of the test | ||||||||||||||||
Students' feedback A questionnaire with open and closed questions is used. Students give feedback to teachers (technical and content wise). |
20 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Analysis of the test Reliability, validity, students' satisfaction survey, explaining solutions |
45 min | Diskussion | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Lehrer | Nein | Nein | ||||||
Further student investigation Students investigate application areas of mathematics learned. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Ja | Ja | Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 2.58h | |||||||||||||||
The Derivative - basic concepts, techniques and rules Verstehen Explain the concept of the derivative of a real function of one real variable and its geometric interpretation (90%), Anwenden Apply differential calculus to find local extrema of a function with one variable and inflection points of the function. (30%), Analysieren Analyze an elementary function using derivatives and sketch its graph (20%), Analysieren Define elementary functions of a real variable, analyze their properties and sketch their graphs. (10%) |
||||||||||||||||
Concept and definition of the derivative | ||||||||||||||||
Introduction of problems - motivation FC approach Video on problems that lead to the derivative: the slope of a tangent, velocity, optimization |
30 min | Erwerb | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Disscusion Students participate in discussions related to the introductory video. |
30 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Kollege | Nein | 0 | Formativ | Kollege | ||||
Lecture - concept of derivative Professors work with students in a hybrid format on the development od the concept of the derivative, geometric interpretation and definition. |
60 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Quiz Students take a short quiz based on the concept od the derivative. |
20 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Practice Assistants work with students on derivatives; techniques and rules application. |
90 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Independent practical work. Students practice different differentiation techniques based on material in LMS and texbooks. |
90 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 5.33h | |||||||||||||||
Derivatives of implicit functions, chain rule, higher-order derivatives | ||||||||||||||||
Video lecture - advanced techniques Students listen to a short video on the introduction advanced techniques of differentiation and then participate in a face to face presentation by the teacher on these techniques. |
60 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Quiz Students take a short quiz based on advanced techniques of differentiation. |
20 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Nein | Nein | 2 | Formativ | Automatisiert | ||||
Practice Assistants work with students on examples of derivation of implicit functions and chain rule. |
90 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Independent practical work - advanced techniques. Students learn and practice higher-order derivatives based on material in LMS and texbooks. |
90 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Independent investigation Students are required to investigate on their own the application areas and history of calculus. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 5.83h | |||||||||||||||
Application of derivatives Anwenden Apply differential calculus to find local extrema of a function with one variable and inflection points of the function. (60%), Analysieren Analyze an elementary function using derivatives and sketch its graph (50%), Analysieren Analyze and solve a problem task in the area of mathematical analysis of the function of one variables (10%) |
||||||||||||||||
Finding local extrema | ||||||||||||||||
Video-lecture - function extrema Student listen video lecture about finding the absolute (or global) minimum and maximum values of a function. |
30 min | Erwerb | Online | Synchron | Lehrer nicht anwesend | Nein | Nein | Lehrer | Nein | Nein | ||||||
Quiz Students take a short quiz based on finding extrema of function. |
20 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Practice Assistants work with students on finding function increasing or decrease intervals by use of local extrema. |
90 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Independent practical work-finding extrema Students practice finding increasing or decreasing intervals based on material in LMS and texbooks. |
90 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Self-assessment Students take self-assessment based on the assessment tasks in LMS (database). Based on the results they are instructed to further investigate. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Nein | Ja | Lehrer | Nein | 0 | Formativ | Lehrer | ||||
Gesamtarbeitsbelastung der Einheit | 5.33h | |||||||||||||||
Curvature‐ Concavity and convexity | ||||||||||||||||
Video-lecture- Concavity and convexity Student watch video lecture that explains points of inflection, and concavity and convexity of a function. |
25 min | Erwerb | Online | Synchron | Lehrer nicht anwesend | Nein | Nein | Lehrer | Nein | Nein | ||||||
Independent practical work -concavity and convexity Students practice finding point of inflection based on material in LMS and texbooks. |
90 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Quiz Students take a short quiz about function concavity and convexity. |
20 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Automatisiert | Nein | 2 | Formativ | Automatisiert | ||||
Practice Assistants work with students on describing the shape or curvature of a curve. |
90 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Self-assessment Students take self-assessment based on the assessment tasks in LMS (database). Based on the results they are instructed to further investigate. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Nein | Ja | Lehrer | Nein | 0 | Formativ | Lehrer | ||||
Gesamtarbeitsbelastung der Einheit | 5.25h | |||||||||||||||
Plotting graph | ||||||||||||||||
Reading- graph plotting Students read material about applying derivatives on plotting graph functions. |
60 min | Erwerb | Online | Synchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | 0 | Formativ | Automatisiert | ||||
Independent practical work - graph plotting Students practice graph plotting based on material in LMS and texbooks. |
90 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Practice Assistants work with students on plotting graphs. |
90 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Self-assessment Students in small group take self-assessment based on the assessment tasks in LMS (database). |
90 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Ja | Ja | Lehrer, Automatisiert | Nein | 2 | Formativ | Lehrer | ||||
Gesamtarbeitsbelastung der Einheit | 5.5h | |||||||||||||||
Monthly test 2 Verstehen Explain the concept of the derivative of a real function of one real variable and its geometric interpretation (10%), Anwenden Apply differential calculus to find local extrema of a function with one variable and inflection points of the function. (10%), Analysieren Analyze an elementary function using derivatives and sketch its graph (20%) |
||||||||||||||||
Preparation fot the test | ||||||||||||||||
Independent practical work Students work independently |
200 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Ja | Automatisiert, Kollege | Nein | Nein | ||||||
Disscussion about technical and content related isssues Students are given information in LMS and then they can ask questions. |
60 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Ja | Lehrer, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 4.33h | |||||||||||||||
Monthly test (kolokvij) | ||||||||||||||||
Test The test is prepared in hybrid delivery mode using individualised assignments from the databases in LMS. |
90 min | Bewertung | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Lehrer, Automatisiert | Nein | 20 | Summativ | Lehrer, Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 1.5h | |||||||||||||||
Analysis of the test | ||||||||||||||||
Students' feedback A questionnaire with open and closed questions is used. Students give feedback to teachers (technical and content wise). |
20 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Analysis of the test Reliability, validity, students' satisfaction survey, explaining solutions |
45 min | Diskussion | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Lehrer | Nein | Nein | ||||||
Further student investigation Students investigate application areas of mathematics learned. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Ja | Ja | Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 2.58h | |||||||||||||||
Project team work - PEER ASSESSMENT Analysieren Analyze and solve a problem task in the area of mathematical analysis of the function of one variables (5%), Erstellen Create a program solution for a specific mathematical problem and present the solution in written format (100%) |
||||||||||||||||
Preparation for the project | ||||||||||||||||
Presentation of teamwork Professors and assistants present the way of working on the project, the choice of the project topic and the formation of the project team. The link of the project assignment (PBL) with the learning outcomes is explained, and how the PBL will contribute to students' future jobs. Teachers present the initial proposal of evaluation criteria for the project. The initial criteria include: research on the theoretical background, investigation of possible methodology for a solution, problem solution, presentation of the solution, quality of teamwork. Number of students: cca 100, 3-4 per team |
45 min | Diskussion | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Choice of project topic and team Students form teams of 3-4 (based on their own choice) and then choose a project topic from the list. Students investigate the research topics before making a final choice. Each team will be provided with their own virtual environment for teamwork (wiki). |
75 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Ja | Ja | Nein | Nein | Nein | ||||||
Initial research, discussion and questions Students research the project topic and discuss the topic within the team, but can also ask questions in a discussion forum in the LMS. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Ja | Ja | Lehrer, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 3.5h | |||||||||||||||
Work on project | ||||||||||||||||
Disscusion of peer-assessment criteria Teachers and students discuss the criteria for project assessment, the level of achievement, and how to recognize the level of achievement. At the end, a rubric is finalized and hopefully understood by all the students. The initial criteria may be changed based on discussion. The levels of achievement will be described, ranging from 0 do 4 (depending on a specific criterion - some may have 2, and other 3 or 4 levels). |
45 min | Diskussion | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Excercise peer-assessment (peer-grading) Students are supposed to peer-assess two projects (for previous years - including one better and one not-so-good) to practice how to use the LMS, criteria, and rubrics. After that, discussion about the process is performed and the criteria are clarified if necessary. Students discuss (mutually and with the teacher) the issues related to academic integrity, fair assessment and ethical issues related to cheating. |
90 min | Übung | Online | Asynchron | Lehrer anwesend | Nein | Ja | Lehrer, Automatisiert, Kollege | Nein | Nein | ||||||
Project work Students research the chosen topic and collaborate within their teams. Students solve a project task, create a software solution and/or use adequate tools, and prepare written material(s) and other necessary documentation. Finally, they upload all the artifacts into the LMS (workshop in Moodle). |
640 min | Produktion | Hybrid | Asynchron | Lehrer nicht anwesend | Ja | Ja | Lehrer, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 12.91h | |||||||||||||||
Project assessment and presentation | ||||||||||||||||
Presentation Students' teams present their projects to teachers and other students. Teachers and other students ask questions and discuss the solutions. |
120 min | Diskussion | Hybrid | Synchron | Lehrer anwesend | Ja | Ja | Lehrer, Kollege | Nein | Nein | ||||||
Assessment and peer-assessment (peer-grading) Students participate in peer-assessment based on the pre-defined assessment criteria and levels of achievement given in the assessment rubric in the Moodle workshop. Each student is assigned with 2 projects to assess - the distribution is done automatically in the Moodle workshop. Peer-assessment is double-blinded: students are not given information about whose work they are assessing or who is assessing their work. The final grade is calculated based on teacher assessment (higher weight) and student peer-assessment (lower weight). Students are given grades for (1) their project submission and (2) their peer-assessment. |
90 min | Bewertung | Hybrid | Asynchron | Lehrer anwesend | Nein | Nein | Lehrer, Kollege | Nein | 20 | Summativ | Lehrer, Kollege | ||||
Reflection on results Students and teachers discuss the results of the PBL and peer-assessment, based on the learning analytics provided in Moodle and not on an individual basis. Each team has the opportunity to propose improvements to their artifact based on the feedback received. Improved artifacts can be resubmitted and teachers decides on whether the grades should be modified based on that. |
90 min | Untersuchung | Hybrid | Synchron | Lehrer anwesend | Nein | Ja | Lehrer, Automatisiert, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 5h | |||||||||||||||
Integration - basic concepts, techniques and rules Verstehen Explain the concept of primitive function and integrals of a function with one variable (45%), Anwenden Determine the primitive function and apply integral calculus in calculating surface area and volume. (20%), Analysieren Analyze and solve a problem task in the area of mathematical analysis of the function of one variables (35%) |
||||||||||||||||
Concept and definition of integration | ||||||||||||||||
Introduction of problems - motivation Video on problems that lead to the integral: calculating surface of area, concept of primitive function and integrals of a function ( upper and lower Darboux sum). |
30 min | Erwerb | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Disscusion Students participate in discussions related to the introductory video |
15 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Kollege | Nein | 0 | Formativ | Kollege | ||||
Lecture - concept of integral Professors work with students in a hybrid format on the development od the concept of the integral, geometric interpretation and definition. |
120 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Quiz Students take a short quiz based on the concept od the integral |
10 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 2.91h | |||||||||||||||
Integration techniques | ||||||||||||||||
Lecture - advanced techniques Professor presents advanced techniques of integration. Students can ask questions. |
90 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Practice Assistants work with students on integrals; techniques and rules application. |
120 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Independent practical work. Students learn and practice bsed on material in LMS and texbooks. |
120 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Quiz (Integration-math problems) Students take a short quiz based on the concept od the derivative. |
30 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Automatisiert | Nein | 2 | Formativ | Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 6h | |||||||||||||||
Application of integral calculus Verstehen Explain the concept of primitive function and integrals of a function with one variable (35%), Anwenden Determine the primitive function and apply integral calculus in calculating surface area and volume. (60%) |
||||||||||||||||
Calculating surface area | ||||||||||||||||
Lecture - calculating surface Student listen video lecture about calculating surface area. |
45 min | Erwerb | Online | Synchron | Lehrer nicht anwesend | Nein | Nein | Lehrer | Nein | Nein | ||||||
Quiz Students take a short quiz based on calculating surface area. |
20 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Lecture Professor checks how many students watched the video lesson and what the quiz results were. Based on the results of the quiz, teacher repeats concepts that are less well understood and designs lecture to upgrade and broad the topic. Students have possibility for additional questions. |
120 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Practice Assistants work with students on calculating surface area. |
120 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Independent practical work-calculating surface area Students practice calculating surface area. |
180 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Self-assessment Students take self-assessment based on the assessment tasks in LMS (database). |
90 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Ja | Lehrer | Nein | 2 | Formativ | Lehrer | ||||
Gesamtarbeitsbelastung der Einheit | 9.58h | |||||||||||||||
Calculating volume | ||||||||||||||||
Lecture - calculating volume Student listen video lecture about calculating volume. |
30 min | Erwerb | Online | Synchron | Lehrer nicht anwesend | Nein | Nein | Lehrer | Nein | Nein | ||||||
Quiz Students take a short quiz based on calculating volume. |
20 min | Bewertung | Online | Asynchron | Lehrer anwesend | Nein | Nein | Automatisiert | Nein | 1 | Formativ | Automatisiert | ||||
Lecture Professor checks how many students watched the video lesson and what the quiz results were. Based on the results of the quiz, teacher repeats concepts that are less well understood and designs lecture to upgrade and broad the topic. Students have possibility for additional questions. |
90 min | Erwerb | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Practice Assistants work with students on calculating volume. |
90 min | Übung | Vor Ort | Synchron | Lehrer anwesend | Nein | Ja | Lehrer | Nein | Nein | ||||||
Independent practical work-calculating volume Students practice calculating volume. |
120 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Nein | Automatisiert | Nein | Nein | ||||||
Self-assessment Students take self-assessment based on the assessment tasks in LMS (database). |
90 min | Bewertung | Online | Asynchron | Lehrer nicht anwesend | Nein | Ja | Lehrer | Nein | 2 | Formativ | Lehrer | ||||
Gesamtarbeitsbelastung der Einheit | 7.33h | |||||||||||||||
Monthly test 3 Verstehen Explain the concept of primitive function and integrals of a function with one variable (20%), Anwenden Determine the primitive function and apply integral calculus in calculating surface area and volume. (20%) |
||||||||||||||||
Preparation fot the test | ||||||||||||||||
Independent practical work Students work independently |
200 min | Übung | Vor Ort | Asynchron | Lehrer nicht anwesend | Nein | Ja | Automatisiert, Kollege | Nein | Nein | ||||||
Disscussion about technical and content related isssues Students are given information in LMS and then they can ask questions. |
60 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Ja | Lehrer, Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 4.33h | |||||||||||||||
Monthly test (kolokvij) | ||||||||||||||||
Test The test is prepared in hybrid delivery mode using individualised assignments from the databases in LMS. |
90 min | Bewertung | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Lehrer, Automatisiert | Nein | 20 | Summativ | Lehrer, Automatisiert | ||||
Gesamtarbeitsbelastung der Einheit | 1.5h | |||||||||||||||
Analysis of the test | ||||||||||||||||
Students' feedback A questionnaire with open and closed questions is used. Students give feedback to teachers (technical and content wise). |
20 min | Diskussion | Online | Asynchron | Lehrer nicht anwesend | Nein | Nein | Nein | Nein | Nein | ||||||
Analysis of the test Reliability, validity, students' satisfaction survey, explaining solutions |
45 min | Diskussion | Hybrid | Synchron | Lehrer anwesend | Nein | Nein | Lehrer | Nein | Nein | ||||||
Further student investigation Students investigate application areas of mathematics learned. |
90 min | Untersuchung | Online | Asynchron | Lehrer nicht anwesend | Ja | Ja | Kollege | Nein | Nein | ||||||
Gesamtarbeitsbelastung der Einheit | 2.58h | |||||||||||||||
Gesamtarbeitsbelastung des Kurses | 138.66h |